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Abstract Powerful response surface methods based on kriging and radial basis function
(RBF) interpolation have been developed for expensive, i.e. computationally costly, global
nonconvex optimization. We have implemented some of these methods in the solvers rbfSolve
and EGO in the TOMLAB Optimization Environment (http://www.tomopt.com/tomlab/). In
this paper we study algorithms based on RBF interpolation. The practical performance of
the RBF algorithm is sensitive to the initial experimental design, and to the static choice
of target values. A new adaptive radial basis interpolation (ARBF) algorithm, suitable for
parallel implementation, is presented. The algorithm is described in detail and its efficiency is
analyzed on the standard test problem set of Dixon–Szegö. Results show that it outperforms
the published results of rbfSolve and several other solvers.

Keywords Global optimization · Expensive function · CPU-intensive · Costly function ·
Mixed-integer · Nonconvex · Software · Black-box · Derivative-free · Response surface ·
Radial basis functions · Surrogate model · Response surface · Splines

1 Introduction

Global optimization of continuous black-box functions that are costly (CPU-intensive, com-
putationally expensive) to evaluate is a challenging problem. Several approaches based on
response surface techniques, most of which need to utilize every computed function value,
have been developed over the years. In his excellent paper [11], Jones reviews the most
important developments. Many methods have been developed based on statistical approaches,
called kriging, see e.g. the Efficient Global Optimization (EGO) method in Jones et al. [13].
A second approach is found in the MCS solver described in [10]. In this paper we con-
sider methods based on radial basis function interpolation, RBF methods, first discussed in
[5,15]. Gutmann gave an interesting presentation of his algorithmic developments in 1999
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[3], and since then we have been implementing RBF and kriging based algorithms. In [1], we
describe a careful numerical implementation of the RBF algorithm in the solver rbfSolve that
has been commercially available in the TOMLAB/CGO toolbox [7] for expensive problems
since 2000. Originally aimed at simply bounded black-box problems, rbfSolve and the solver
EGO has been improved to handle mixed-integer constrained expensive problems. Regis and
Shoemaker discuss another way to utilize RBF interpolation in [16] and have developed a
new algorithm called CORS-RBF. Our objective in this paper is to formulate a new adaptive
RBF algorithm to overcome some of the weaknesses found in the RBF algorithm.

Problems that are costly to evaluate are commonly found in engineering design, industrial
and financial applications. The function value could be the result of a complex computer
program, an advanced simulation, e.g. computational fluid dynamics (CFD), tuning of finan-
cial trading strategies, or design optimization. One function value might require the solution
of a large system of partial differential equations, and hence consume anything from a few
minutes to many hours. In the application areas discussed, derivatives are most often hard to
obtain and the algorithms make no use of such information. The practical functions involved
are often noisy and nonsmooth, however the approximation methods used commonly assume
smoothness. Our goal is to develop global optimization algorithms that work in practice and
produce reasonably good solutions with a very limited number of function evaluations.

1.1 The costly global black-box nonconvex problem

min
x

f (x)

s/t −∞ < xL ≤ x ≤ xU < ∞
(1)

where f (x) ∈ R, xL , x, xU ∈ R
d . Let � ∈ R

d be the compact set defined by the simple
bounds in (1). The task of global optimization is to find the set of parameters x in the feasible
region � ⊂ R

d for which the objective function f (x) obtains its lowest value. In other words,
a point x∗ is a global optimizer to f (x) on �, if f (x∗) ≤ f (x) for all x ∈ �. On the other
hand, a point x̂ is a local optimizer to f (x), if f (x̂) ≤ f (x) for all x in some neighborhood
around x̂ . Obviously, when the objective function has several local minima, there could be
solutions that are locally optimal but not globally optimal and standard local optimization
techniques are likely to get stuck before the global minimum is reached. Therefore, some
kind of global search is needed to find the global minimum with some reliability.

From an application perspective there are often restrictions on the variables besides the
lower and upper bounds, such as linear, nonlinear or even integer constraints. Henceforth,
we seek to solve a more complicated problem formulated as follows:

1.2 The mixed-integer costly (expensive) global black-box nonconvex problem

min
x

f (x)

s/t
−∞ < xL ≤ x ≤ xU < ∞

bL ≤ Ax ≤ bU

cL ≤ c(x) ≤ cU , x j ∈ N ∀ j ∈ I,

(2)

where f (x) ∈ R, xL , x, xU ∈R
d , A ∈ R

m1×d , bL , bU ∈R
m1 and cL , c(x), cU ∈ R

m2 .
The variables xI are restricted to be integers, where I is an index subset of {1, . . . , d}. Let
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�C ∈ R
d be the feasible set defined by the constraints in (2). We assume that the function

f (x) is continuous with respect to all variables, even though we demand that some variables
only take integer values. Otherwise it would not make sense to do surrogate modeling of f (x).
Another assumption is that the nonlinear constraints are cheap to compute compared to the
costly f (x). All costly constraints can be treated by adding penalty terms to the objective
function in the following way:

min
x

p(x) = f (x) + ∑

i
wi max

(
0, ci (x) − ci

U , ci
L − ci (x)

)
, (3)

where weighting parameters wi have been added. As we have shown in [1] this strategy
works in practice for an industrial train set design problem.

The idea of the RBF algorithm by Powell and Gutmann [5] is to use radial basis function
interpolation to build an approximating surrogate model and define three utility functions.
The next point, where the original objective function should be evaluated, is determined by
optimizing one or more of these utility functions. The utility functions are derived from the
definition of target values. The RBF methods described so far are based on static schemes
in the selection of these values. However, the result of the algorithm is very sensitive to the
choice of these. Therefore we propose a more general adaptive approach to set target values.
The standard RBF algorithm commonly results in points sampled on the boundary, which
leads to poor performance and non-convergence. In order to deal with this, we propose a
one-dimensional search for suitable target values f ∗

n to improve convergence. This leads to
a sequence of global optimization problems to be solved in each iteration.

In Sect. 2 the RBF interpolation and algorithm are described. A detailed presentation of
the new Adaptive RBF algorithm is given in Sect. 3. The convergence of ARBF is discussed
in Sect. 4. The efficiency of the ARBF algorithm is analyzed on the standard test problem set
of Dixon-Szegö [2] in Sect. 5. Repeated tests show that the adaptive implementation of the
RBF algorithm is very robust and accurate on the problems compared to the standard RBF
algorithm. It also outperforms several other solver options according to previously published
results. Finally, in Sect. 6, we give some concluding remarks and summarize the new fea-
tures. The generalization of the ARBF algorithm to solve the more complicated problem in
(2) together with test results on standard mixed-integer nonlinear (MINLP) and nonconvex
constrained problems are presented in [8]. A large part of the added complexity from linear,
nonlinear and integer constraints is normally handed by the subsolvers used in conjunction
with ARBF. This simplifies the generalization of the ARBF algorithm to handle MINLP.

2 The RBF method

First, the surrogate model used in the RBF method is defined. Given n distinct points
x1, . . . , xn ∈ � with known function values Fi = f (xi ), i = 1, . . . , n, the radial basis
function interpolant sn has the form

sn(x) =
n∑

i=1

λiφ (‖x − xi‖2) + p(x), (4)

where ‖·‖ is the Euclidean norm, λ1, . . . , λn ∈ R and p is in �d
m (the space of polynomials

in d variables of degree less than or equal to m). Common choices of radial basis functions
φ and the corresponding polynomial p(x) and minimal polynomial degree mφ are given in
Table 1. When φ is either cubic with φ(r) = r3 or thin plate spline with φ(r) = r2 log r , the
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Table 1 Different choices of radial basis functions

RBF φ(r) > 0 p(x) mφ = degree(p(x))

Cubic r3 aT · x + b 1
Thin plate spline r2 log r aT · x + b 1
Linear r b 0
Multiquadric

√
(r2 + γ 2), γ > 0 b 0

Gaussian exp(−γ r2), γ > 0 {0} −1

radial basis function interpolant sn has the form

sn(x) =
n∑

i=1

λiφ (‖x − xi‖2) + bT x + a, (5)

with λ1, . . . , λn ∈ R, b ∈ R
d , a ∈ R. The unknown parameters λi , b, a are obtained as the

solution of the linear equations
(

� P
PT 0

) (
λ

c

)

=
(

F
0

)

, (6)

where � is the n × n matrix with �i j = φ
(∥
∥xi − x j

∥
∥

2

)
and

P =

⎛

⎜
⎜
⎜
⎝

xT
1 1

xT
2 1
...

...

xT
n 1

⎞

⎟
⎟
⎟
⎠

, λ =

⎛

⎜
⎜
⎜
⎝

λ1

λ2
...

λn

⎞

⎟
⎟
⎟
⎠

, c =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

b1

b2
...

bd

a

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, F =

⎛

⎜
⎜
⎜
⎝

f (x1)

f (x2)
...

f (xn)

⎞

⎟
⎟
⎟
⎠

. (7)

If rank(P) = d +1, the matrix

(
� P
PT 0

)

is nonsingular and system (6) has a unique solution

[14]. Thus a unique radial basis function interpolant to f at the points x1, . . . , xn is obtained.
After this, one has to consider the question of choosing the next point xn+1 to evaluate

the objective function for. The idea of the RBF algorithm is to use radial basis function inter-
polation and a measure of ‘bumpiness’ of a radial function, σ . A target value f ∗

n is chosen
as an estimate of the global minimum of f . For each y /∈ {x1, . . . , xn} there exists a radial
basis function sy(x) that satisfies the interpolation conditions

sy(xi ) = f (xi ), i = 1, . . . , n,

sy(y) = f ∗
n .

(8)

The next point xn+1 is then calculated as the value of y in the feasible region that minimizes
σ(sy). As a surrogate model is used, the function y 	→ σ(sy) is much cheaper to compute
than the original function. In [4], a ‘bumpiness’ measure σ(sn) is defined and it is shown
that minimizing σ(sy) subject to the interpolation conditions (8) is equivalent to minimizing
a utility function gn(y) defined as

gn(y) = (−1)mφ+1µn(y)
[
sn(y) − f ∗

n

]2
, y ∈ � \ {x1, . . . , xn} . (9)

Writing the radial basis function solution to the target value interpolation problem (8) as

sy(x) = sn(x) + [
f ∗
n − sn(y)

]
ln(y, x), x ∈ R

d , (10)
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µn(y) is the coefficient corresponding to y of the radial basis interpolation function solution
ln(y, x) that satisfies ln(y, xi ) = 0, i = 1, . . . , n and ln(y, y) = 1. µn(y) can be computed
as follows. � is extended to

�y =
(

� φy

φT
y 0

)

, (11)

where (φy)i = φ(‖y − xi‖2), i = 1, . . . , n, and P is extended to

Py =
(

P
yT 1

)

. (12)

Then µn(y) is the (n + 1)-th component of v ∈ R
n+d+2 that solves the system

(
�y Py

PT
y 0

)

v =
⎛

⎝
0n

1
0d+1

⎞

⎠ . (13)

The notations 0n and 0d+1 are used for column vectors with all entries equal to zero and
with dimension n and (d + 1), respectively. The computation of µn(y) is done for many
different y when minimizing gn(y). This requires O(n3) operations if not exploiting the
structure of �y and Py . Hence, it does not make sense to solve the full system each time. A
better alternative is to factorize the interpolation matrix and update the factorization for each
y. An algorithm that requires O(n2) operations is described in [1].

Note that µn and gn are not defined at x1, . . . , xn and

lim
y→xi

µn(y) = ∞, i = 1, . . . , n. (14)

This will cause problems when µn is evaluated at a point close to one of the known points.
The function hn(x) defined by

hn(x) =
{ 1

gn(x)
, x /∈ {x1, . . . , xn}

0, x ∈ {x1, . . . , xn} (15)

is differentiable everywhere on �, and is thus a better choice as an objective function. Instead
of minimizing gn(y) in (9), Gutmann [5] suggests to minimize −hn(y). In [1] instead we
propose to minimize − log(hn(y)). By this we avoid a flat minimum and numerical trouble
when hn(y) is very small.

When there are large differences between function values, the interpolant has a tendency
to oscillate strongly. It might also happen that min sn(y) is much lower than the best known
function value, which leads to a choice of f ∗

n that overemphasizes global search. To handle
these problems, large function values are in each iteration replaced by the median of all
computed function values.

We are now ready to formulate a general description for the basic RBF algorithm, which
has been discussed in [6] and [1].

Algorithm RBF:

• Find initial set of n ≥ d + 1 sample points xi using experimental design.
• Compute the n costly function values f (xi ), i = 1, . . . , n.
• Find point with lowest function value (xMin, fMin) by computing fMin(xMin) = min

i=1,...,n
f (xi ).
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• As an approximation of the function f (x), x ∈ �, use the n sampled points to build a
smooth RBF interpolation model sn(x) (surrogate model, response surface model) with
chosen φ and m ≥ mφ from Table 1.

• Iterate until n ≥ nMax, or a prescribed maximal CPU time (or fGoal , known goal for
f (x), achieved with a certain relative tolerance ).

– Find global minimum of the RBF surface, sn(xsn ) = min
x∈�

sn(x).

– In every iteration in sequence pick one of the N + 2 cycle step choices.
1. Cycle step −1 (InfStep). Set target value f ∗

n = −∞, i.e. solve the global opti-
mization problem

g∞
n (x∞

gn
) = min

x∈�\{x1,...,xn} µn(x), (16)

where µn(x) is computed as described in equation (13). Set xn+1 = x∞
gn

.
2. Cycle step k = 0, 1, . . . , N − 1 (Global search). Define target value f ∗

n ∈
(−∞, sn(xsn )

]
as f ∗

n (k) = sn(xsn ) − wk ·
(

max
i

f (xi ) − sn(xsn )

)

, with wk =
(1 − k/N )2 or wk = 1 − k/N . Solve the global optimization problem

gn(xk
gn

) = min
x∈�\{x1,...,xn} (−1)mφ+1µn(x)

[
sn(x) − f ∗

n (k)
]2

(17)

and set xn+1 = xk
gn

.
3. Cycle step N (Local search).

If sn(xsn ) < fMin − 10−6| fMin|, accept xsn as the new search point xn+1.
Otherwise set f ∗

n (k) = fMin − 10−2| fMin|, solve (17) and set xn+1 = xk
gn

.
– If xn+1 is not too close to x1, . . . , xn , accept xn+1 as search point and evaluate f (xn+1).
– Update the point with lowest function value (xMin, fMin), if f (xn+1) < fMin.
– Increase n and compute new RBF surface.

The InfStep is optional, since for most problems, it does not improve the convergence to
the global optimum. However, the coefficient µn(x) is always needed in the Global search
step, and sometimes in the Local search step as well. Note that Gutmann [5] only considers
one special case of the algorithm in which InfStep among others are not included. The range
maxi f (xi ) − sn(xsn ) may for many problems become too big. Gutmann suggests replacing
f (xi ) > mediani f (xi ) with mediani f (xi ) both when computing the range and in the RBF
interpolation. In practice one commonly needs to use some strategy to reduce the range.
When large values are replaced by the median in the RBF interpolation, many numerical
interpolation problems are avoided, but when additional points are sampled close to a sta-
tionary point, the function approximation gets less and less accurate in other parts of the
space.

The RBF algorithm was implemented by Gutmann in a C program RBFGLOB described
in his thesis [6]. The release of rbfSolve in TOMLAB has enabled users to solve many new
practical problems, for example in [1], we describe the solution of a train set design problem.
The first version was entirely written in Matlab, and too slow for practical use. Over the
years the solver has been greatly improved with major speedups achieved from performing
all time-consuming operations in Fortran. It is also possible to warm start the TOMLAB/CGO
solvers from a previous run with any /CGO solver.

Based on [1], Regis and Shoemaker has made a research implementation of the RBF
algorithm, and tried several algorithmic enhancements, some described in [16].

The RBF algorithm in practice is very sensitive to the choice of initial experimental design,
especially when using stochastic designs. If the initial steps of the algorithm fail to find some

123



J Glob Optim (2008) 41:447–464 453

point in the basin of the global optimum, it often starts iterating repeatedly with sample points
on the boundaries in the Global search, and only refines a local minima in the Local search.

Define the number of active variables α(x) as the number of elements of x that have
components close to the bounds in the box, i.e.

α(x) = |{ j ∈ 1, . . . , d : |x j − x j
L | ≤ εx or |x j − x j

U | ≤ εx }|. (18)

If a point is in the interior, then obviously α(x) = 0. If studying α(x) during the itera-
tions when running rbfSolve for many problems, the algorithm frequently generates points
with some components on their bounds, α(x) > 0. Doing a systematic study of the solution
of (17) for many f ∗

n ∈ (−∞, sn(xsn )
]

on different subproblems during the RBF iterations
confirmed that the solution is typically not interior, and hence a careful choice of target value
is needed. Solving a large set of problems (17) for different target values should generally
be much less time-consuming than computing the costly f (x). In addition computations for
different target values are independent and could be done in parallel on different CPUs. By
examining solutions for a large set of target values, it should be possible to find good search
points in most iteration steps, and only evaluate the costly f (x) for these points. In the next
section a new adaptive RBF algorithm suitable for parallel implementation is formulated.

3 The adaptive radial basis algorithm (ARBF)

In this section the main ideas of the new Adaptive Radial Basis Algorithm are discussed and
a formalized description is provided. To overcome the limitations of the RBF algorithm, the
choice of target values must be made more flexible. The objective function class is very wide
and a robust algorithm must adapt to the particular behavior of a function. A few choices of
target values based on the function value range as in the RBF algorithm only works for nice
well-behaved problems. This observation has been confirmed by practical experience with
the RBF algorithm for a large set of real-life user problems over the past 6 years. Instead, a
more adaptive algorithm is proposed, based on evaluating a large set of target values in each
iteration. The approach is similar to two of the algorithms proposed by Jones in [11] to solve
kriging problems, named the Enhanced Method 4 and Method 7.

Jones considers several kriging algorithms, e.g. Method 4, where the problem in each iter-
ation is to maximize the probability of improvement after setting a target value. The optimal
solution found is used as the new search point, and the costly f (x) is evaluated for this search
point and a new surrogate model of kriging type is computed. As in the RBF algorithm, it is
a major difficulty to set the target value properly in each iteration. To overcome this prob-
lem, Jones proposes a new method called the Enhanced Method 4 that uses a range of target
values in each iteration, corresponding to low, medium and high desired improvement. In
the ARBF algorithm, target values are selected from a range, but the global optimization
problem defined by (17) is solved instead.

Evaluating a large set of target values leads to many candidate points. If all were used,
it would lead to several costly function evaluations in each iteration. Jones shows on one-
dimensional examples that the optimal solutions tend to cluster in different areas of the
parameter space. Similar behavior has been observed for the solutions of (17) with different
target values. It is hence natural to apply a clustering algorithm to the set of optimal points
{x̂ j }M

j=1 obtained by solving (17) with different target values. After this only one or a few
points from each group found need to be used. The clustering process is executed with values
mapped to the unit cube [0, 1]d . As described below, Jones suggests applying a tailor-made
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Table 2 Weight factors w j used in the global grid search

0.0 10−4 10−3 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11
0.12 0.13 0.15 0.20 0.25 0.30 0.40 0.50 0.75 1.00 1.50 2.00 3.00
100 ∞

clustering algorithm to the sequence of optimal points in decreasing target value order. The
algorithm has been modified by adding steps 6 and 7. Motivation for these additional steps
are given later on in this section. In the test in step 7 the number of components on bounds
is used, defined as in (18).

3.1 The Jones Cluster Algorithm

• Transform the set of optimal points {x∗
j } to the unit cube [0, 1]d , and compute the distance

between two successive optimal points as 
 j =
√∑d

l=1(x∗
jl − x∗

j+1,l)
2/d .

• Assign point 1, x∗
1 , to group 1.

• Sequentially consider point 2 to M . For each point, if a criterion C > 12, a new group is
started. The criterion C is computed as follows:

1. If 
 j > 0.1 and 
 j−1 > 0.1 then set C = 100, i.e. start a new group.
2. Otherwise, if 
 j > 0.0005, then set C = 
 j−1/
 j .
3. Otherwise, if j ≥ 3 and 
 j > 0.0005, then set C = 
 j−1/ max(
 j−2, 0.0005).
4. Otherwise, if j = 2 and 
1 > 0.1 and 
2 < 0.0005, then set C = 100 to signal the

need for a new group.
5. If none of the above conditions is satisfied, set C = 0, i.e. no need to start a new

group unless any of the following two criteria are fulfilled.
6. If j = M and C < 12 and 
M−1 > 0.1, set C = 100, i.e. start a new group for the

last point.
7. If C < 12 and 
 j−1 > 0.1 and α(x∗

j ) = α(x∗
j−1), check if any of the components

on the bounds for point x∗
j have at least a 10% difference in the corresponding com-

ponents in x∗
j−1. Also test if any of the components on the bounds for point x∗

j−1
have at least a 10% change in the corresponding components in x∗

j . If any of the tests
are true, start a new group by setting C = C + 200.

Let fMin = mini f (xi ) and fMax = maxi f (xi ). Jones suggests setting the target values
using a fixed grid as f ∗

n ( j) = sn(xsn )−w j · f
, where the range is set to f
 = fMax − fMin.
The two first rows in Table 2 show the choice of target value factors w j . In the new algorithm,
two extreme values shown in row three have been added. It is then easier to detect if the range
of target values is sufficient.

The above choice of f
 might become too big if the function varies over a large range. In
such cases, as a fixed grid is used, there may be failure to sample important target values that
would lead to the region of the global minimum. Since the range can only get larger as the
iterations proceed, the algorithm is unlikely to sample these target values in later iterations.
To be more flexible and adaptive, the target values are set as f ∗

n ( j) = sn(xsn ) − β · w j · f
,
where β is an adaptive factor and the range is

f
 =
{

min(max(1, fMin), fMax − fMin), if fMin > 0
min(10 · max(1, | fMin|), fMax − fMin), if fMin ≤ 0.

(19)
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If several optimal solutions for different target values are equal or very close, it might be
a sign that the target values are too close, so β is increased. If the optimal point found for the
second target value is far from the solution of the first target value, i.e. the minimum of the
RBF surface, it is a sign that the target values are too spread out, and β is decreased. In most
cases this happens close to a stationary point.

As in the original RBF algorithm, every iteration of the ARBF algorithm starts by finding
the global minimum of the RBF surface by solving

ŝn := sn(xsn ) = min
x∈�

sn(x).

If ŝn � fMin the RBF surface is fluctuating wildly and there is no point in applying a
target value strategy. The target values need to have values even lower than ŝn, so they might
be set much lower than the actual global minimum. Applying the target value strategy in such
cases generally produces garbage solution points. Instead, the minimum of the RBF surface is
added as a new point repeatedly until the interpolation stabilizes and more reasonable target
values can be set. If ŝn is closer to fMin and the oscillation of the surface is less pronounced,
the question is when to switch to the target value strategy. The RBF surface is still considered
wildly fluctuating, i.e. the same strategy is applied, outside a relative difference of 10%. This
works well in tests so far, but other values could be tried. Currently the following test is
used: If ŝn < fMin − 0.1| fMin| when fMin = 0, or ŝn < fMin − 10v when fMin = 0, then
ŝn � fMin is considered true. v is computed as v = min( f (x)), x ∈ {x : f (x) > 10−7}. For
the special case when the set is empty, v = 10−7 is used.

For every ARBF iteration, the algorithm is in one of three modes: the wild mode described
in the previous paragraph, a global grid search mode, or a local grid search mode. In the global
grid search the aim is to sample one or more points from every region of interest. In the local
grid search the aim is to find a better approximation of any stationary points close to the best
point found so far. Ideally one of these stationary points is also the global minimum. Note that
the global grid search adds sample points in the vicinity of the currently best known point,
but to a lesser accuracy than the local grid search. In the wild mode the aim is to proceed
with surface minimum points until the interpolation is stable enough to make a global target
value grid give reasonable results. The wild mode is entered automatically when the surface
is fluctuating wildly, but the switch between global and local grid mode is determined by
the algorithm in the following way: Start with global grid mode, and as long as this gives
function value reductions, stay in that mode. Both the global and local grid mode always end
by adding the minimum point of the surface. When no reduction is achieved in the global
mode (or possibly only in the final surface minimum sampling) the algorithm switches to
local mode. The same logic applies for local mode: it continues the local grid search until no
reductions are achieved, and then switches to global mode. In both the local and global grid
mode, one or more points might be selected using the cluster algorithm and some heuristic
rules (given later in this section). The formal ARBF algorithm description can now be given.

Algorithm ARBF:

• Find initial set of n ≥ d + 1 sample points xi using experimental design.
• Compute the n costly function values f (xi ), i = 1, . . . , n.
• Find point with lowest function value (xMin, fMin) by computing fMin(xMin) = min

i=1,...,n
f (xi ).

• Use the n sampled points to build a smooth RBF interpolation model sn(x) with chosen φ

and m ≥ mφ from Table 1.
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• Set Global Progress = 1 and Local Progress = 0, to make the initial search mode
global.

• Iterate until n ≥ nMax, or a prescribed maximal CPU time (or fGoal, known goal for f (x),
achieved with a certain relative tolerance ).

– Find the global minimum of the RBF surface, sn(xsn ) = min
x∈�

sn(x).

– Find a set of new search points X = {x̂ j , j = 1, . . . , k} by applying one of the fol-
lowing three types of search procedures dependent on logical conditions given for each
procedure.
1. Wild Mode (S-step). If sn(xsn ) � fMin or EndGrid Mode is set, accept the RBF

surface minimum xsn as the new search point, i.e. X = xsn .
Set EndGrid Mode = 0.

2. Global Grid Mode. (G-step). If GlobalProgress=1, define M target values f ∗
n ∈

(−∞, sn(xsn)] as f ∗
n ( j) = sn(xsn )−β ·w j · f
 with w j , j = 1, . . . , M a vector of

predefined factors in the range [0,∞], and β an adaptive weight factor. The function
range f
 is determined in each step as described in (19). For each of the M target
values, solve the global optimization problem

gn(x∗
j ) = min

x∈�\{x1,...,xn} (−1)mφ+1µn(x)
[
sn(x) − f ∗

n ( j)
]2

. (20)

Then use the Jones Clustering Algorithm on the M optimal solution points x∗
j .

Apply heuristic rules to determine which of the clustered groups to consider, and in
each selected group, which of the points to include in the new set of search points
X ; see the Point Selection Algorithm later in this section.
Set EndGrid Mode = 1.

3. Local Grid Mode. (L-step). If Local Progress = 1, define ML target values using
the same factors w j as in the G-step together with some additional small factors.
Solve (20) and apply the Jones Clustering Algorithm to the ML optimal solutions
x∗

j .
Apply the heuristic rules described in the Point Selection Algorithm to determine
which points in the first cluster group should be included in set X .
Set EndGrid Mode = 1.

– Check the set of new search points X = {x̂ j , j = 1, . . . , k}, deleting any point too close
to the sampled points x1, . . . , xn or to one of the other points in X .

– Set xn+ j = x̂ j , j = 1, . . . , k and evaluate f (xn+ j ), j = 1, . . . , k.
– If min j=1,...,k f (xn+ j ) < fMin

* Update the point with lowest function value (xMin, fMin).
* Set Local Progress = 1 (if L-step).
* Set Global Progress = 1 (if G-step).
else
* Set Local Progress = 0 (if L-step).
* Set Global Progress = 0 (if G-step).

– Increase n by k and compute new RBF surface.

The selection of trial points utilizing the result of the clustering process applied to the set
of optimal solutions computed from the target values is one of the heuristics. For kriging
algorithms, Jones suggests picking the last member of each of the groups formed by the clus-
tering algorithm as a new candidate point, i.e. the one with the smallest target value in each
group. This selection criteria has been found a bit crude when applied to RBF algorithms.
As a practical example refer to the standard test problems (the Shekel test problems from
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Fig. 1 Plot of the Shekel 5, Shekel 7 and Shekel 10, functions along the line segment from (0, 0, 0, 0) to
(10, 10, 10, 10)

the Dixon–Szegö [2] set) that have been very troublesome for the RBF algorithm. These
problems have very steep minima, i.e. local minimizers that lie at the bottom of steep and
narrow basins. In Fig. 1 a cut in the four-dimensional space for the three problems are shown.
Shekel5 has five local minima in [0, 10]4, four of which lie along the diagonal segment from
(0, 0, 0, 0) to (10, 10, 10, 10). These four local minima corresponds to the local minima in
Fig. 1 and the steepest one is the global minimum point. Shekel 7 and Shekel 10 has 7 and
10 local minima, respectively, and as can be seen in Fig. 1 have a very similar behavior along
the line segment as Shekel 5.

Using the 24 = 16 corner points as the initial experimental design and applying the ARBF
algorithm, the clustering results as shown by Table 3 are obtained, where the actual Shekel 5
function values f (x∗

j ) are displayed in the last column. 
 j is the distance measure and C j

is the criterion in the Jones Cluster Algorithm. Gr p is the number of the group that the j th
element belongs to. Dist is the distance from the first group member to the group member
in the j th row.

As seen in the table, the clustering results in six groups ( nGroup = 6). Looking at the target
values f ∗

n ( j) and the corresponding optimal solutions x∗
j it is evident that many components

in the solutions are on the bounds. This has been observed as a common pattern for many of
the solutions of (20). The column with α(x∗

j ) values shows the number of components in x∗
j

that are on the bounds using a loose tolerance, εx = 10−3. Group 5 has interior solutions,
with no components on the bounds. This is an interesting set of solutions with points in the
basin of three local minima, of which one is the global minimum, see Fig. 1. Picking only
the last component would slow down the convergence to the global minima, or even in some
cases make the algorithm only reach a local minima using the maximal number of function
evaluations (e.g. 250).

A Point Selection Algorithm has been developed to deal with this issue. It generates new
trial points primarily based on the results from the Jones Cluster Algorithm. For the Shekel 5
problem, the ARBF algorithm, using the Point Selection Algorithm, finds the global mini-
mum with 4 digits of accuracy in only 43 function evaluations, whereas picking only the last
group component results in 67 function evaluations.
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Table 3 The initial grid search and the result of the Jones clustering algorithm on the Shekel 5 (x ∈ [0, 10]d ,
but scaled to [0, 1]d below) test problem from the Dixon–Szegö set of test functions

j Grp 
 j C j Dist x∗
j1, . . . , x∗

j4 f ∗
n ( j) α(x∗

j ) f (x∗
j )

1 1 0.00121 NaN 0.000 [0.000, 0.000, 0.000, 0.000] −0.2731 4 −0.27312
2 1 0.00403 0.2998 0.001 [0.000, 0.000, 0.002, 0.000] −0.2731 3 −0.27593
3 1 0.02337 0.1723 0.005 [0.000, 0.000, 0.010, 0.000] −0.2734 3 −0.28526
4 1 0.01169 1.9996 0.023 [0.000, 0.000, 0.000, 0.046] −0.2755 3 −0.32277
5 1 0.05563 0.2101 0.034 [0.000, 0.000, 0.000, 0.069] −0.2778 3 −0.34100
6 1 0.00780 7.1290 0.044 [0.000, 0.087, 0.000, 0.000] −0.2802 3 −0.34929
7 1 0.07731 0.1010 0.051 [0.000, 0.103, 0.000, 0.000] −0.2825 3 −0.35135
8 2 0.00610 12.6650 0.000 [0.000, 0.000, 0.115, 0.000] −0.2849 3 −0.34879
9 2 0.09477 0.0644 0.006 [0.000, 0.000, 0.128, 0.000] −0.2872 3 −0.34418
10 3 0.00515 18.4139 0.000 [0.000, 0.000, 0.000, 0.140] −0.2896 3 −0.33782
11 3 0.00476 1.0801 0.005 [0.000, 0.000, 0.000, 0.150] −0.2919 3 −0.33016
12 3 0.00444 1.0738 0.010 [0.000, 0.000, 0.000, 0.160] −0.2943 3 −0.32194
13 3 0.00415 1.0687 0.014 [0.000, 0.000, 0.000, 0.169] −0.2967 3 −0.31352
14 3 0.00390 1.0644 0.019 [0.000, 0.000, 0.000, 0.177] −0.2990 3 −0.30511
15 3 0.00368 1.0609 0.022 [0.000, 0.000, 0.000, 0.185] −0.3014 3 −0.29689
16 3 0.14087 0.0261 0.026 [0.000, 0.000, 0.000, 0.192] −0.3037 3 −0.28894
17 3 0.01425 9.8820 0.125 [0.000, 0.206, 0.000, 0.000] −0.3084 3 −0.27407
18 3 0.01147 1.2429 0.137 [0.000, 0.234, 0.000, 0.000] −0.3202 3 −0.24333
19 3 0.18879 0.0608 0.147 [0.000, 0.257, 0.000, 0.000] −0.3320 3 −0.22049
20 4 0.17739 100.0000 0.000 [0.000, 0.000, 0.000, 0.276] −0.3437 3 −0.20335
21 5 0.03510 205.0534 0.000 [0.193, 0.220, 0.192, 0.220] −0.3673 0 −0.31805
22 5 0.08462 0.4148 0.035 [0.231, 0.252, 0.231, 0.252] −0.3908 0 −0.27072
23 5 0.06126 1.3813 0.120 [0.318, 0.334, 0.318, 0.334] −0.4497 0 −0.55948
24 5 0.04936 1.2412 0.181 [0.380, 0.394, 0.380, 0.394] −0.5085 0 −5.54053
25 5 0.01899 2.5988 0.230 [0.431, 0.442, 0.431, 0.442] −0.6262 0 −1.74012
26 5 0.01648 1.1526 0.249 [0.450, 0.460, 0.451, 0.460] −0.7439 0 −0.96267
27 5 0.02759 0.5973 0.266 [0.468, 0.476, 0.468, 0.476] −0.9793 0 −0.70704
28 6 0.00079 34.7723 0.000 [0.500, 0.499, 0.499, 0.499] −23.814 0 −0.57592
29 6 0.00000 0.0288 0.000 [0.500, 0.500, 0.500, 0.500] −∞ 0 −0.57535

The Point Selection Algorithm tries to find a smaller subset of optimal solutions that are
of interest. There are three distinct parts in the selection procedure.

In any group there may be solutions that have components on the bounds. If a solution
has more components on the bounds than any other solutions within the cluster group it is
rejected. Furthermore, if the solutions in a cluster group with the lowest number of compo-
nents on bounds have more components on bounds than any solution in other clusters, the
whole cluster group is rejected.

The algorithm treats the first and last cluster group differently. The cluster group size, i.e.
the distance between the first and the last optimal solution in the group, is used to determine
how many trial solutions to select.

The individual distances between optimal solutions are used for the selected cluster groups
in between. If solutions are very close, only one solution is selected, otherwise every solution
is included in the set X . The motivation is that these solutions far away from each other may
be in the basin of different local minima, as seen in the Shekel example discussed above.
Following is a formal description of the algorithm:
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3.2 Point selection algorithm

• Compute the minimum and maximum number of components on the bounds in the cluster
groups,

αG
Min = min

j ∈ Group G
α(x∗

j ), G = 1, . . . , nGroup

and

αG
Max = max

j ∈ Group G
α(x∗

j ), G = 1, . . . , nGroup.

• Compute the minimum over all groups of both the minimal number of components on the
bounds in the group, and the maximal number of components on the bounds in the group,
i.e. compute

αMin = min
G = 1,...,nGroup

αG
Min

and

αMax = min
G = 1,...,nGroup

αG
Max.

• Only the points in each group G that has the minimal number of components on the bounds,
αG

Min, are considered for inclusion in the set X of trial points. Define

x̄G = {x∗
j : j ∈ Group G, α(x∗

j ) = αG
Min}

as the set of acceptable points for each group G and let |Ḡ| denote the number of acceptable
points in the shrinked group.

• Compute the normalized distance from the first point in each shrinked group to every other
point in the group, and denote the result δ̄G

i , i = 1, . . . , |Ḡ|. The normalized distance is
computed using the same formula as 
i in the Jones Cluster algorithm. Note that δ̄G

1 = 0
and δ̄G

|Ḡ| is the cluster group size. Column Dist in Table 3 shows a numerical example.
• Set εB = 0.1. Used to test if the cluster group size is large or not.
• Set εG = 0.03. Used to test if the distance between individual solutions is large or not.
• Different rules are applied for the first group close to the RBF surface minimum (G = 1),

the last group including the infinite target value (G = nGroup) or any group in between
(G = 1, . . . , nGroup − 1):

1. If G = 1
– If α1

Min = αMin or L-step, one of the first elements in group 1 is included in X based
on a heuristic set of rules. For the L-step another element is often added. The rules are
dependent on the relative error in the last sampled point, |sn(xn)− f (xn |

| f (xn)| , which gives a
measure of how accurate the RBF interpolation is and how close the currently best
point is to a stationary point.

– If δ̄1
|Ḡ| > εB , the last element in the first group, x̄1

|Ḡ|, is included in X . Compute the

element closest to half the size of the first group, i.e.

i∗ = argmin min
i

||δ̄1
i − δ̄1

|Ḡ|/2||.

The solution x̄1
i∗ is included in X .
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– elseif either δ̄1
|Ḡ| > εB

2 or (δ̄1
|Ḡ| > εB

5 and |Ḡ| ≥ 2
3 · M), then the last element in the

first group, x̄G
|Ḡ|, is included in X . Note that the second logical expression is true if

the number of elements in the first group is very large and the group size is not too
small.

2. If G = nGroup

– If α
nGroup
Min = αMin and δ̄

nGroup

|Ḡ| > εB , the last group is unusually large. Two points are

selected, the first and the last, i.e. x̄
nGroup
1 and x̄

nGroup

|Ḡ| are included in X .

– elseif α(x∗|G|) = αMin, then add the last point in the last group, x̄
nGroup

|Ḡ| to X . This test

is fulfilled if the optimal solution to (20) with infinite target value, f ∗
n = −∞, has

a minimal number of components on the bounds.
3. If G = 2 and α2

Min = αMin or for G = 3, . . . , nGroup−1: if αG
Min = αMin and (either

αG
Max = αMax or δ̄G

|Ḡ| > εB), then select points from group G using the following
procedure:
– Add the first point x̄G

1 to X .
– Set D = 0.
– For i = 2, . . . , |Ḡ|: if δ̄G

i − D > εG , add x̄G
i to set X and set D = δ̄G

i .

Applying the Point Selection Algorithm on the result in Table 3, it can be seen that the size
of the first group is sufficiently large for the inclusion of one point, 0.051 > εB

2 = 0.05. The
last point in group 1, number 7, is selected. The last group 6 consists of two interior points,
and the first element, number 28, is selected. Note that the criterion value for number 21,
C21 > 200. This element was hence selected using the additional rule 7 in the Jones Cluster-
ing Algorithm. For the RBF interpolation it is important whether or not the trial points are
close to the bounds, as closeness to the bounds is a clear indication of failure. Such points are
of no interest and only slows down the convergence of the algorithm to the global minimum.
It is therefore important to distinguish between points on bounds and points which clearly
have values far from the bounds. In rule 7 a new group is started if one of the components
have separated at least the distance 0.1 from the neighboring bound component. In this case
candidate 21 have three out of four components changing around 0.2 compared to the pre-
vious solution point, and it is quite natural to consider point 21–27 as a new group. The first
element in group 5, number 21, is selected. The distance between each successive point in
this group is larger than εG until point number 26, which is not included, while number 27 is
far enough from number 25. In total six of the seven points in group 5 will be included in the
trial set X , number 21, . . . , 25, 27, together with number 7 and 28. No points are selected in
group 2, 3 and 4 because all group members have too many components on the bounds. Note
that the above only applies when implementing a G-step, as opposed to the L-step where
only the first cluster group (G = 1) is considered in the Point Selection Algorithm.

4 The convergence of the ARBF method

The aim is to prove convergence of the method for any continuous function f . The theo-
rem by Törn and Zilinskas [17] states that the sequence generated by the RBF and ARBF
algorithms should be dense. Applied to these methods the theorem states

Theorem 1 The algorithm converges for every continuous function f if and only if it gen-
erates a sequence of points that are dense in �.
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The convergence of the RBF method is proved and discussed in detail in Sect. 4 in Gut-
mann [5]. The new ARBF algorithm fits into the general framework of the RBF algorithm
as formulated in [5], there referenced as Algorithm 3. The requirement for the chosen target
values is that in every iteration step the target value is chosen in f ∗

n ∈ [−∞, sn(xsn )
]
. In every

cycle of the ARBF algorithm we pick at least one point in this set. Gutmann suggests several
static algorithms for the choice of target values, but in our ARBF algorithm the target value
is dynamically chosen as described in the previous section. Therefore the ARBF algorithm
will have the same convergence properties as is proved by Gutmann for the RBF method
called Algorithm 3.

The convergence results does not allow a free choice of the target values. In order to
achieve convergence we have to assure that the target values are low enough in an infinite
number of steps. The following condition must hold:

sn(xsn ) − f ∗
n > τ


ρ/2
n+1||sn ||∞, (21)

where τ > 0 and ρ ≥ 0 are constants and ρ < 1 is the linear spline case, and ρ < 2 the
cubic and thin plate spline cases. The ||.||∞ denotes the maximum norm of a function on �,
defined as

||g||∞ := max
x∈�

|g(x)|, g ∈ C(�)

and we define the minimal distance to the new point as


n+1 = min
1≤ j≤n

||xn+1 − x j ||.

Convergence to the global minimum has so far only been possible to establish for the surface
spline type functions, presented in the following compact reformulation of Gutmann’s major
convergence theorem:

Theorem 2 Let φ(r) = r, φ(r) = r2 log r or φ(r) = r3. Further, choose an integer m,
the polynomial degree, such that 0 ≤ m ≤ d in the linear spline case, 0 ≤ m ≤ d + 1 in
the thin plate spline case and 0 ≤ m ≤ d + 2 in the cubic spline case. Let (xn)n∈N be the
sequence generated by the ARBF algorithm, and sn be the radial function that interpolates
(xi , f (xi )), i = 1, . . . , n. Assume that for infinitely many n ∈ N, the choice of f ∗

n satisfies
(21). Then the sequence (xn) is dense in �.

With the assumption of smoothness of f , Gutmann is able to show that the right hand side
of (21) can be replaced by τ


ρ/2
n+1, hence this constraint on the target values f ∗

n can be easily
checked. We prefer to avoid any additional assumptions in our ARBF method and instead
always add the target value f ∗

n = −∞ in every iteration. We then apply a corollary from
Gutmann, which proves the convergence of our ARBF method:

Theorem 3 Let the assumptions of Theorem 2 on φ and m hold. Further, let f be continuous,
and, for infinitely many n ∈ N, let f ∗

n = −∞. Then the ARBF method converges.

5 Numerical results

In this section the results obtained for the standard test functions from Dixon and Szegö [2]
are reported. Table 4 gives a compact description of the test functions, including the abbrevi-
ation used, the problem dimension d , the number of local and global minima and the simple
bounds.
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Table 4 Compact description of the Dixon–Szegö test functions

Function Abbrev. Dim. No. of No. of Domain
loc. min glob. min

Shekel 5 S5 4 5 1 [0, 10]4
Shekel 7 S7 4 7 1 [0, 10]4
Shekel 10 S10 4 10 1 [0, 10]4
Hartman 3 H3 3 4 1 [0, 1]3
Hartman 6 H6 6 4 1 [0, 1]6
Branin BR 2 3 3 [−5, 10] × [0, 15]
Goldstein–Price GP 2 4 1 [−2, 2]2

Table 5 Number of function evaluations needed to achieve a function value with relative error less than 1%
for ARBFMIP, rbfSolve, RBFGLOB, CORS-RBF, DIRECT, EGO, MCS and DE

ARBFMIP rbfSolve RBFGLOB CORS-RBF DIRECT EGO MCS DE

S5 34 96 76 41 103 – 83 6400
S7 31 72 76 46 97 – 106 6194
S10 25 76 51 51 97 – 103 6251
H3 31 22 43 25 83 35 79 476
H6 43 87 112 108 213 121 74 7220
BR 22 26 44 34 63 28 30 1190
GP 21 27 63 49 101 32 40 1018

The definitions of problem S5, S7, S10, H3, H6 and GP are taken from [2] and problem
BR from [9, p. 468]. The ARBF algorithm is implemented in the TOMLAB solver ARBFMIP
and like rbfSolve available in the TOMLAB/CGO toolbox. Subsolvers are optional, but in
our tests the global solver glcDirect and the local solver SNOPT have been used. The global
subproblem solutions have been verified by running the slower OQNLP solver.

Table 5 shows the number of function evaluations needed to achieve a function value with
relative error less than 1%. The relative error is defined as

E = fMin − fglobal

| fglobal| , (22)

where fMin is the current best function value and fglobal is the known global optimum (which
is nonzero for all the problems in Table 4). For the results reported in Table 5, ARBFMIP was
run with default values and φ(r) = r3 for problems H6 and GP, and with φ(r) = r2 log r
for the other problems. rbfSolve was executed with φ(r) = r3, the search space being trans-
formed to the unit hypercube and large function values replaced by the median. The results for
the RBFGLOB and the DE solver were from [5] and the results for the CORS-RBF algorithm
from [16]. The results for DIRECT were taken from [12] and the results for EGO from [13],
where no results were presented for the S5, S7 and S10 problems. We tested MCS version
2.0 with parameter settings suggested by Dr. Waltrud Huyer; smax = 5 · d + 10, i ini t =
0, local = 50 and gamma = eps ≈ 2 · 10−16 (the MATLAB floating point relative accu-
racy).

The best result for each test problem is marked bold. The results for the new ARBMIP
solver is clearly very promising. It performs best for six out of seven problems. For one prob-
lem it pays a price for the additional robustness, and uses slightly more function evaluations
than the RBF algorithm in rbfSolve.
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Table 6 Number of function evaluations needed to achieve a function value with relative error less than 0.01%
for ARBFMIP, RBFGLOB, DIRECT, MCS (best value and average value)

ARBFMIP RBFGLOB DIRECT MCS (Best) MCS (Average)

S5 43 100 155 83 583
S7 59 125 145 129 633
S10 47 112 145 103 595
H3 82 158 199 79 131
H6 64 160 571 111 113
BR 37 64 195 41 51
GP 26 76 191 81 94

Table 6 shows the number of function evaluations needed to achieve a function value
with relative error less than 0.01%. Even if the algorithm has achieved two digits of relative
accuracy (1%), it might be a hard task to find two more, and many publications have not
reported any such results. The results for the MCS solver are stochastic, and both the best
and the average value are shown, taken from [10]. Looking at the results in Table 6, we draw
the conclusion that the ARBF algorithm has very good convergence properties. Results were
best for six out of seven problems. For the H3 problem the MCS (Best) result is slightly better.

All corner points were used in the initial experimental design for ARBFMIP, except for
the H6 problem, where 7 corner points and the center point were used to avoid unneces-
sary sampling. A limited set of points in the initial design has proven more suitable for
large-dimensional problems, In fact, the number of additional search points needed for con-
vergence for the H6 problem with 8 initial points, were almost the same as compared to using
all 64 corner points. This is very promising and shows that an initial strategy based on limited
corner sampling is feasible for higher-dimensional problems. The performance for rbfSolve
and RBFGLOB were worse than in the tables if started with these 8 initial points.

6 Conclusions

Methods based on radial basis interpolation are powerful tools in solving expensive black-box
optimization problems. This paper has discussed the RBF algorithm, which has been used in
practice for many years and seems to be the best method available. We have discussed some
weak points with the algorithm and new methods to overcome the problems.

The RBF method uses a static selection of target values and is very dependent on the
scaling of the problem. The global target value optimization problem often does not produce
interior points, and the search points computed does not help the practical convergence of
the algorithm.

We present the details of a new Adaptive RBF (ARBF) method. In every iteration, the
method does an extensive search for target values to produce a suitable selection of search
points. It is possible to parallelize the global target value optimization as well as the costly
function evaluations. These two tasks are the most CPU intensive parts of the algorithm. We
also show that the new ARBF algorithm have similar convergence properties as the RBF
algorithm.

The results obtained for the Dixon and Szegö test functions show that ARBF is a very
promising algorithm. Further development and tests are needed to show that the results are
robust and that similar good performance can be achieved on real-life problems for different
experimental designs.
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